
Data Science as a Means to 
Expedite Software Behavior 

Analysis

Presented by Joely Nelson



Background

● Joely Nelson (she/her)
● Interests

○ Data science and machine learning applied to 
domains that have a positive social impact

● Education
○ Received BS of Computer Science with a minor in 

mathematics from the University of Washington in 
2020 

○ Will complete MS of Computer Science & 
Engineering at the University of Washington in March 
2022

● Work + Research
○ Computational synthetic biology research
○ R&D Data Science Intern for the Center of Cyber 

Defenders at Sandia National Laboratories



Research Question: Can we determine 
software behavior strictly from log analysis?



Motivation

● Programs generate event logs
● These logs can be analyzed manually to determine the behavior of the 

program
Note: All data in this presentation is synthetic, but 
is representative of the real data and results.



Motivation

● Issues with manual analysis
○ Require an experienced analyst
○ Time consuming and tedious

● Project Goal: Automate the process of software analysis with the use of data 
analytics on logs to point analysts to interesting behavior.

○ Begin by researching the viability of different analysis methods.
○ Could these methods identify what behaviors the program exhibited given only the logs?



The Data
Note: All data in this presentation is synthetic, but 
is representative of the real data and results.



Motivation for Natural Language Processing

● Can think of logs like a collection of text
○ Each event (or row) in the log can be thought of as a 

word

● Hypothesis: Seeing certain words in a particular 
sequence, or even having certain words just being 
present in the log, could tell us something about 
the behavior of the program that generated that 
log



Experimental Design

In order to research ways to automate the analysis, 
we used the following pipeline:

● Generate logs for different types of program 
behavior

○ We focused on two programs:
■ Notepad
■ Windows Defender (Online scan VS offline 

scan)
● Filter Logs
● Feed logs into NLP Model 
● Evaluate results

○ Are we able to differentiate different types of 
behavior based on the model?

Generation

Filtering

NLP Model

Evaluation



Experimental Design

In order to research ways to automate the analysis, 
we used the following pipeline:

● Generate logs for different types of program 
behavior

○ We focused on two programs:
■ Notepad
■ Windows Defender (Online scan VS offline 

scan)
● Filter Logs
● Feed logs into NLP Model 
● Evaluate results

○ Are we able to differentiate different types of 
behavior based on the model?

Generation

Filtering

NLP Model

Evaluation



Model 1: Pairwise n-gram divergence comparisons

Filtered 
Logs

Generate 
n-Gram 

distributions 
for each log

Calculate 
Divergences 

between each 
pair of logs

Similarity

Input OutputModel

Tokenize data 
based on 
columns



The Data



Tokenizing Logs

● We’re using NLP, but what is a “word” considered in a log?
● Say we are given the super short example log below
● All columns might not be relevant to the analysis -- chose only relevant ones (this was something 

we experimented with)

Sequence Time Process 
Name

PID Operation Path Result Detail

122103 10:30... Explorer.EXE 3232 RegOpenKey C:\Users\... SUCCESS Desired 
Access: 
Read/Write

122104 10:30... Explorer.EXE 3232 RegQueryValue C:\Users\... SUCCESS Type: 
REG_SZ...



Tokenizing Logs

● We’re using NLP, but what is a “word” considered in a log?
● Say we are given the super short example log below
● All columns might not be relevant to the analysis -- chose only relevant ones (this was something 

we experimented with)

Sequence Time Process 
Name

PID Operation Path Result Detail

122103 10:30... Explorer.EXE 3232 RegOpenKey C:\Users\... SUCCESS Desired 
Access: 
Read/Write

122104 10:30... Explorer.EXE 3232 RegQueryValue C:\Users\... SUCCESS Type: 
REG_SZ...



Tokenizing Logs

● We’re using NLP, but what is a “word” considered in a log?
● Say we are given the super short example log below
● All columns might not be relevant to the analysis -- chose only relevant ones (this was something 

we experimented with)

Sequence Time Process 
Name

PID Operation Path Result Detail

122103 10:30... Explorer.EXE 3232 RegOpenKey C:\Users\... SUCCESS Desired 
Access: 
Read/Write

122104 10:30... Explorer.EXE 3232 RegQueryValue C:\Users\... SUCCESS Type: 
REG_SZ...

[(Explorer.EXE, RegOpenKey, SUCCESS), (Explorer.EXE, RegQueryValue, SUCCESS)]



What is an n-gram?

● A n-gram is a contiguous sequence of n items from a given text.
● For example the 2-grams of this sequence:

● Would be:

● Why n-grams?
○ n-grams can capture sequences of words

“sphinx of black quartz judge my vow”

(“sphinx”, “of”), (“of”, “black”), (“black”, “quartz”), (“quartz”, “judge”), (“judge”, “my”), (“my, 
vow”)

n-grams



n-gram distributions

● Say we have two texts we’d 
like to compare

● We generate the n-grams
○ 2-grams in this case

● Generate n-gram 
distributions

● And compare the 
distributions as vectors

“the cat sleeps”“the cat plays”

n-gram probability

(“the”, “cat”) 0.5

(“cat”, “plays”) 0.5

n-gram probability

(“the”, “cat”) 0.5

(“cat”, “sleeps”) 0.5

Text 1 Text 2

n-grams

n-gram Text 1 Text 2

(“the”, “cat”) 0.5 0.5

(“cat”, “plays”) 0.5 0

(“cat”, “sleeps”) 0 0.5



Divergences

● A divergence function is a function which calculates the “distance” of one 
probability distribution to another

● Gives us a numerical way to compare texts by comparing n-gram distributions
● Divergences Used

○ Bhattacharyya distance
■ Results can be between 0 and infinity

○ Jensen-Shannon Divergence
■ Results can be between 0 and 1. (We used this distance for this reason)

Divergences



Heatmap Visualization

● Example of what a heatmap 
might look like

○ Comparison of 2 cases with 3 
replicates each

○ For a simple program like 
notepad



Additional Techniques

● n-gram explainability
○ Output a file which will order the n-grams by what contributed most
○ Could help analysts understand what exactly made cases different from each other



Additional Techniques

● k-fold comparisons
○ A way to compare cases and see if they are distinguishable
○ Algorithm:

■ For each dataset of cases generated from the same behavior:
● Split the dataset into k groups
● For each unique group

○ Take the group and separate it from the others. Call it item 1
○ Call the remaining groups item2
○ Find the divergence between item1 and item2

■ Take the maximum divergence seen. 
○ This is the maximum allowable divergence between cases that are the same. It follows that 

when comparing two cases, if the divergence is greater than that number, then the two cases 
are different.



Results of Model 1

● Works great for simple cases
○ ie Notepad

● Breaks down for more complex cases
○ Cannot distinguish
○ For example a defender online vs offline scan



Model 2: dimensionality reduction with UMAP

Filtered 
Logs

Generate 
n-Gram 

distributions 
for each log

UMAP
2D Projection 

of Data

Input OutputModel

Tokenize data 
based on 
columns



UMAP

● Uniform Manifold Approximation and Projection
● Dimensionality reduction algorithm (like PCA or tSNE)
● Two steps:

○ Construct a high dimensional graph representation of the data
○ Optimize a low-dimensional graph to be as structurally similar as possible

● In our project, we were reducing the dimensions of the n-gram distribution 
vectors

○ “points” refers to the n-gram distribution vectors



UMAP

Step 1: Construct a high dimensional graph 
representation of the data by building a "fuzzy 
simplicial complex"

● What is a "fuzzy simplicial complex"?
○ Weighted graph, with edge weights 

representing the likelihood that two points 
are connected

● How does it build this?
○ Each point has a radius extend from it.
○ Two points are considered connected 

when those radii overlap.
○ The radius size is based on the distance to 

each point's nth nearest neighbor
○ Graph is "fuzzy" because the likelihood of 

connection decreases as the radius grows
● Demo (by Andy Coenen, Adam Pearce)

https://pair-code.github.io/understanding-umap/


UMAP

Step 2: Optimize a low-dimensional graph to be as structurally similar as possible

● Imagine the high dimensional graph as if the edges between points were 
springs, where each spring is stronger as the edge probability increases

● Then we squish it down into smaller dimensions



UMAP Visualization



Future Directions

● Test UMAP with different behavior cases
● Try UMAP with different hyperparameters

○ n_neighbors, min_dist

● Look into what information could be gained by looking into the stack traces
○ We were looking at flat csvs
○ Process manager captures the stack trace for each event

● Attempt to classify cases based on UMAP results
○ Clustering, logistic regression, neural networks, etc.



Questions
joelynelson3333@gmail.com


